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We report the first Si/SiGe power HBT at Ku-Band (12.6GHz) with a maximum output power 

of 25dBm. The HBT layer structure, physical layout and fabrication technology are optimized to 
achieve reduced parasitic impedances, high power handling capability and thermal stability.  As a 
result, a unique Si-based technology with Johnson�s figure of merit (fT×BVCEO) in excess of 
400GHzV has been realized.  The performance characteristics are compatible with those of GaAs 
HBTs. However, the Si/SiGe devices can be integrated with CMOS circuitry and is expected to 
significantly reduce the cost of the future wireless systems.    

The HBT layer structure is grown at Daimler-Chrysler on a high-resistivity Si substrate 
(ρ=10kΩ-cm), starting with a 1µm CVD buried layer serving as the sub-collector. The remainder 
of the heterostructure, as shown in Table 1, is grown in one step by MBE. In this design, a 
Si0.7Ge0.3 base layer with a thickness of 200 Å has been employed to optimize the fmax of the 
device, while a relatively thick Si collector layer (5000 Å 2×1016cm-3) has been designed to 
achieve high power operation.  Effort has been made to design the layout of the device with 
minimal parasitics. Every three 1.4×20 µm2 emitter fingers were grouped together, surrounded by 
base electrodes with 1.5 µm width to form the sub-cell. Multi-finger HBT devices have been 
designed in both common-emitter and common-base configurations by combining a number of 
sub-cells. Emitter and base contact pads are isolated from the intrinsic device to achieve higher 
power gain. The processing technique developed at the University of Michigan consists of a 
combination of dry and wet-etching steps, thin film metalizations and SiO2 passivation. This 
technology has been optimized to produce 1 µm emitter fingers with a high yield. Figure 1 shows 
the SEM photomicrograph and a three-dimensional schematic of the fabricated device. 

Power HBTs with different device geometry were characterized for their DC, small-signal and 
high power performance. Figure 2 depicts the DC characteristics of a 15 finger 1.4×20 µm2 HBT 
device in common-base configurations.  Figure 3 shows the results of small-signal S-parameter 
measurements for the same device. A maximum available gain of 14dB was achieved for this 
HBT. Finally, these devices were measured for their power performance at Ku-Band (12.6GHz) 
using a Focus Microwave automatic load-pull system. The peak PAE achieved for the 15 finger 
1.4×20 µm2 HBT in common-base configuration was 23% with an associated power gain of 7.5dB 
at an output power of 22dBm in class AB amplification (Figure 4). The device delivered a 
maximum output power of 25dBm under the same bias and matching conditions.  In summary, a 
novel Si/SiGe HBT technology with excellent power performance characteristics, suitable for the 
RF front-end of the future mobile communication systems, is presented. 
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Figure 1: Si/SiGe HBT Technology. 

Table 1: Si/SiGe HBT layer structure. Figure 2: IC-VCB characteristics of CB 15 
finger 1.4××××20 µµµµm2 Si/SiGe HBT. 

Emitter cap       Si                n+                 2x1020 cm-3 250 nm 

Spacer          Si0.7Ge0.3 i                                                7 nm 

Emitter              Si               n                   2x1018 cm-3              50 nm

Spacer          Si0.7Ge0.3 i                                                3 nm

Base             Si0.7Ge0.3 p+                1x1020 cm-3             25 nm

Collector           Si               n- 2x1016 cm-3          500 nm

Sub-collector    Si   (CVD)   n+        As     1x1019 cm-3 1000 nm
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Figure 3: Measured power gains of 15 finger 
1.4××××20 µµµµm2 Si/SiGe HBT in common-base 

configuration. 

Figure 4: Measured power performance for 
15 finger 1.4××××20 µµµµm2 Si/SiGe HBT under 

class AB amplification. 
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